Tag Archives: air compressor for sale

China manufacturer Medical 550W-30L Silence Oil Free Air Compressor for Dental air compressor for sale

Product Description

                                                             Technical  parameter
Model

Horsepower

(KW/HP)

Voltage

(V/Hz)

Exhaust Volume

(L/min)

Pressure

(Bar)

Tank

(L)

Noise

(dB)

Weight

(kg)

Meas

(cm)

YM550-25L 0.55/0.75 220/50 110 8 25 ≤48 23 44*44*56

YUNMEI is a professional company that develops, produces, and sells silent oil-free air compressors, belt-driven air compressors,direct-driveb , refrigerated and and pumps.

Our annual output value reaches 100 million yuan ,The products sell well all over the country and are exported to Southeast Asia, Italy,Czech Republic, Germany, UK, Poland,

the United States, the United Kingdom, the Middle East, South America, Africa and some other countries. 
 

Features:
1 It can support 1pcs dental unit
2 CE Approved
3 Color options: blue, white,yellow,red,black 
4 OEM can be made according to client’s request
5.uesd in dental chair

Quality control:
Following the sales tenet of “Quality First, Customer Foremost”, the company has gradually established an image of top products, premium quality, and best reputation”

Customer questions & answers
Q: What’s your MOQ?
A: Our MOQ is 5 units per model . 

Q: What’s your payment terms?
A: We accept T/T ;
 
Q: What’s the delivery time?
A: We could deliver the goods within 30 days after order confirmed(OEM order)

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Lubrication Style: Oil-free
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Order Sample

550W/0.75HP
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China manufacturer Medical 550W-30L Silence Oil Free Air Compressor for Dental   air compressor for saleChina manufacturer Medical 550W-30L Silence Oil Free Air Compressor for Dental   air compressor for sale
editor by CX 2024-04-03

China manufacturer Direct Selling Al2055 2HP 8bar Alu Air Pump Italian Type 100L Portable Air Compressor air compressor for sale

Product Description

1.Feature:
Belt driven air compressor with HQ parts ensure safty, efficiency under high temperature.

2.Specification:
 

Model Motor Capacity Pressure Cylinder Speed Air Tank Weight Packing dimension
SY-AL2055 1.5KW(2HP) 170L/Min 8Bar φ55mm×2 1050RPM 50L 41KG 97×38×70CM
SY-AL2055 1.5KW(2HP) 170L/Min 8Bar φ55mm×2 1050RPM 100L 50KG 100×39×80CM

3.Compressed Air Solutions:

All the professionalism you need to have your correct supply of AIR(Air Volume, Air Pressure and Air Quality)
• When it comes to air (you need it, we have it).
• Piston compressors Cast Iron, Aluminum.
• Screw compressors, and all compressor accessories.
• Motors, Air Pumps, Regulators, Filters, Dryers, after coolers and so on.
• Our Heavy Duty Air Compressors with a sense of(Quality saves your cost)
• Unique Design and Engineering, special Machining Standards.
• Skilled labor for assembly line, backed up with technical support worldwide.

4.About us:


Founded in 2571, ZheJiang CHINAMFG HangZhoui Technology Co., Ltd. is a subsidiary of CHINAMFG Electrical Stock Company,The company mainly produces air compressors,air blower,baking burner for tobacco and equipment. The company’s sales and operation headquarters is located in ZheJiang , the main production base is located in the eastern new area of HangZhou City, ZHangZhoug Province, covering an area of nearly 100 mu, with nearly 90,000 square production workshop, at the same time in ZheJiang HangZhou District CHINAMFG production base. Adhering to the corporate culture of CHINAMFG COMPANY “quality creation Sayi, credibility and integrity based on the world “, the company actively develops, forge ahead, and is committed to building the company into an international company with core competitiveness and leading the innovation and development of the industry.

5.Why choose us:

6.FAQ:

Q1: Are you the manufacturer or trading company?
A1: We are the manufacturer.

Q2: Where is your factory?
A2: It is located in HangZhou City, ZHangZhoug Province, China.

Q3: What’s the terms of trade?
A3: FOB,CFR,CIF or EXW are all acceptable.

Q4: What’s the terms of payment?
A4: T/T,L/C at sight or cash.

Q5: How long is your delivery time?
A5: Generally it is 5-10 days if the goods are in stock or it is 20-30 days if the goods are not in stock, it is according to quantity.

Q6: What is the advantage about your company?
A6: Our company has professional team and professional production line.

Q7: If we travel to China to checking your facility, are you welcome?
A7: Of course, why not? We will provide the whole accompany from you landing in China. Only Give us a call before your arrive. We will pick up you from the airport, living in our company’s hotel, and driving by car take you visiting our company. Warm Welcome!

Q8: How Many Years of your company working in this industry?
A8: We have 20-year experience in this field.

7. Contact us:

ZheJiang CHINAMFG HangZhouI TECHNOLOGY CO., LTD.
Address:Company Address: O Block,10th Floor,768 Xietu Road, Xihu (West Lake) Dis. District, ZheJiang
Address:ZHangZhoug Factory Address :23rd Street, New Eastern District, HangZhou City, ZHangZhoug Province
Address:ZheJiang Factory Address :1515 Xihu (West Lake) Dis. Road, Luojing Town, HangZhou District, ZheJiang
 
 

 
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: One Year
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China manufacturer Direct Selling Al2055 2HP 8bar Alu Air Pump Italian Type 100L Portable Air Compressor   air compressor for saleChina manufacturer Direct Selling Al2055 2HP 8bar Alu Air Pump Italian Type 100L Portable Air Compressor   air compressor for sale
editor by CX 2024-03-28

China best 300bar High Pressure Air Scuba Diving Breathing Tank Portable Air Compressor for Sale manufacturer

Product Description

Our company is a professional high-pressure gas compressor solution provider, which can meet the needs of different customers. As for the high-end demand in the field of medium and high-pressure compressors, and can provides users with customized products and high-quality services.
 

working principle

This product is mass-produced after design changes and optimizations in accordance with the German model. The final piston adopts a special process, the piston ring adopts the Japanese Riken process, and all casting products are cast in a large-scale outsourcing factory. The product has been on the market for many years and has won users’ approval. Unanimously praised. This product adopts three-cylinder three-stage compression, splash lubrication, last-stage safety valve and filter system. HBBC-100 can provide safe compressed air for any industry that requires high-pressure pure air source, and provide safe compressed air that meets the requirements of human breathing. This product is designed, produced and tested and accepted in accordance with the requirements of GB/T 12929-2008 “Marine High Pressure Piston Air Compressor”; the air quality complies with the EN12571 international breathing compressor breathing standard; HBBC-100 is a kind of air compression equipment, it will be free 1 kg (1bar/0.1Mpa) of the air in the state is compressed to a high pressure gas with a gauge pressure of 300 kg (300bar/30Mpa). The oil and impurities in the high-pressure air can filter the inhaled air containing fine particles (PM2.5) to a safety value of less than 10 micrograms, which meets the standards set by the World Health Organization, making the exhaust gas clean and tasteless. The personnel provide highly purified, clean, odorless, safe and reliable compressed breathing air.

Main parameters
 

Model HBBC-100/EM/ET/SH
Work pressure 30Mpa Mpa(300bar)
Displacement (Inhalation state) 100L/min
Type W-type layout-3-cylinder three-stage reciprocating piston compression
 
Drive Electric 220V/50Hz/2.2kw or 380V/50Hz/3kw or gasoline engine drive
 
Lubrication method Splash lubrication
 
Cooling method Air-cooled
 
Control method Manual shutdown
 
Clean air 1 air filtration,1 oil-water separation,1 air purification
Safety devices Interval installation valve,Install the protective cover for the transmission part
 
Package dimensions(Length×width×height) 70×38×42 cm
 
Weight 46kg
inflation speed 6 liter bottle 30Mpa about 22 minutes
 
Packing List Manual, safety inspection report certificate, 1 set of inflation hose and joint, 1 bottle of standard lubricant.
 
  1. Model:HBBC-100/EM/ET/SH
  2. Work pressure:30Mpa Mpa(300bar)
  3. Displacement (Inhalation state):100L/min L/min
  4. Type:W-type layout-3-cylinder three-stage reciprocating piston compression
  5. Drive:Electric 220V/50Hz/2.2kw or 380V/50Hz/3kw or gasoline engine drive
  6. Lubrication method:Splash lubrication
  7. Cooling method:Air-cooled
  8. Control method:Manual shutdown
  9. Clean air:1 air filtration,1 oil-water separation,1 air purification
  10. Safety devices:Interval installation valve,Install the protective cover for the transmission part
  11. Package dimensions(Length×width×height): 70×38×42 cm
  12. Weight:46kg
  13. Inflation speed:6 liter bottle 30Mpa about 22 minutes
  14. Certified product:CE certification, MA test report
  15. Packing List: Manual, safety inspection report certificate, 1 set of inflation hose and joint, 1 bottle of standard lubricant.

Product composition and characteristics

The rotating part is equipped with a protective cover device to ensure the safety of the operator;
High-strength nylon cooling fan for better heat dissipatione;
Three-cylinder three-stage compression, low compression ratio, reliable performance;
Motor drive or gasoline engine drive to meet the gas supply demand under various conditions;
Splash-type high-efficiency lubrication;
Air filter (paper filter element);
Oil-water separator (standard with manual blowdown);
Air purification system (standard with manual blowdown) activated carbon, molecular sieve, carbon monoxide absorption molecules constitute a triple breathing air purification system, reusable packing cartridge, simple and convenient replacement, saving cost;
Manual shutdown function (optional automatic shutdown);
Final safety valve, automatic discharge of over pressure;
Shockproof pressure gauge 0~5800psi/400bar;
The compressor base is made finely and durable;
Stainless steel cooling system;

Main application
            Diving bresthing                                                                  Fire Bresthing

Fire breathing application: Equipped in the gas supply stations of the fire brigade or various fire-fighting vehicles, it provides emergency gas supply at the scene of a fire or in the rescue and relief process, so that the majority of firefighters will be exposed to various environments such as dense smoke, poisonous gas, steam or oxygen deficiency. Breathing high-purity, clean, odorless, safe and reliable compressed air ensures that fire extinguishers can safely and effectively carry out fire fighting, rescue, disaster relief, and rescue.
Diving breathing application: Diving clubs, diving enthusiasts, marine breeding, marine rescue, shipboard equipment, underground operations, fishery fishing, aquaculture, sunken object salvage, underwater engineering, water parks, shipbuilding and other industries, providing divers with high purification, clean and tasteless , Safe and reliable compressed breathing air. In an environment that cannot meet the requirements of the human body for normal breathing, the air is filled into a high-pressure gas cylinder for human breathing.

Product display

                       

If you want us to provide you with detailed technical design and quotation, please provide the following technical parameters, and we will reply to your email or phone within 24 hours.

1.Flow: _____ Nm3 / hour

2.Pressure: _____Bar(MPa)

3. How many cylinders to fill

4. Whether it needs to be filled every day

                          /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Proive After-Sales Service
Warranty: 18monthes
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Lubrication Style: Oil-free
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China best 300bar High Pressure Air Scuba Diving Breathing Tank Portable Air Compressor for Sale   manufacturer China best 300bar High Pressure Air Scuba Diving Breathing Tank Portable Air Compressor for Sale   manufacturer
editor by CX 2024-03-09

China best Air Compressor Part/Screw Compressor/Air Compressor Part//Brake Lathe/Tire Changer/Car Lift/Auto Scanner/High Pressure Air Compressor/Oilless Air Compressor air compressor for sale

Product Description

Air Compressor Part/Screw Compressor/Air Compressor Part//Brake Lathe/Tire Changer/Car Lift/Auto Scanner/High Pressure Air Compressor/Oilless Air Compressor

Product Description

 

Detailed Photos

XP3095-8

Model XP3095-8
Power 7.5KW/10HP
Voltage 380V
Exhaust volume 900l/min
Rated pressure 8bar
Machine head speed 880rmp
Air storage tank volume 190L
Cylinder 95mm*3
External dimensions 1480*520*1050mm
Net weight 190KG

XP-0.36/8

Model XP-0.36/8
Power 3KW/4HP
Voltage 220/380V
Exhaust volume 360l/min
Rated pressure 8bar
Machine head speed 980rmp
Air storage tank volume 95L
Cylinder 65mm*3
External dimensions 1120*440*820mm
Net weight 115KG

XP-0.8/8

Model XP-0.8/8
Power 5.5KW/7.5HP
Voltage 380V
Exhaust volume 800l/min
Rated pressure 8bar
Machine head speed 960rmp
Air storage tank volume 120L
Cylinder 90mm*3
External dimensions 1250*500*900mm
Net weight 145KG

XP-0.8/12.5

Model XP-0.8/12.5
Power 5.5KW/7.5HP
Voltage 380V
Exhaust volume 800l/min
Rated pressure 12.5bar
Machine head speed 960rmp
Air storage tank volume 120L
Cylinder 90MM*2          65MM*1
External dimensions 1250*500*900mm
Net weight 145KG

XP-0.9/8

Model XP-0.9/8
Power 7.5KW/10HP
Voltage 380V
Exhaust volume 900l/min
Rated pressure 8bar
Machine head speed 960rmp
Air storage tank volume 180L
Cylinder 90mm*3
External dimensions 1500*500*960mm
Net weight 175KG

XP-0.9/12.5

Model XP-0.9/12.5
Power 7.5KW/10HP
Voltage 380V
Exhaust volume 900l/min
Rated pressure 12.5bar
Machine head speed 960rmp
Air storage tank volume 180L
Cylinder 90MM*2          65MM*1
External dimensions 1500*500*960mm
Net weight 175KG

XP-1.0/14

Model XP-1.0/14
Power 7.5KW/10HP
Voltage 380V
Exhaust volume 1000l/min
Rated pressure 14bar
Machine head speed 960rmp
Air storage tank volume 180L
Cylinder 90MM*2          65MM*1
External dimensions 1500*500*960mm
Net weight 180KG

XP-1.6/8

Model XP-1.6/8
Power 11KW/15HP
Voltage 380V
Exhaust volume 1600l/min
Rated pressure 8bar
Machine head speed 860rmp
Air storage tank volume 320L
Cylinder 100mm*3
External dimensions 1620*620*1200mm
Net weight 330KG

XP-2.0/8

Model XP-2.0/8
Power 15KW/20HP
Voltage 380V
Exhaust volume 2000l/min
Rated pressure 8bar
Machine head speed 860rmp
Air storage tank volume 320L
Cylinder 120mm*3
External dimensions 1620*620*1250mm
Net weight 360KG

 

 

Product display

 

Trade Info:

Trade Terms

FOB / CFR

MOQ

3UNITS  (USD200.00 extrally charged for LCL shipment to cover the inland freight + custom declaration fee)

Port

HangZhou

Shipment

BY SEA /AIR

Payment Terms

T/T

Payment condition

30% prepayment,balanced before shipment.

Supply Capability

1000units/month

Sample Availability

Yes ,But all freight(Inland freight +seafreight) covered by buyer

Sample Time

5-10days(depends on whether have in stock)

Lead Time

25-30days(Rush season 5-10days longer)

Packing

Metal frame&Carton

Delivery time

30-45days shipping time (depends on destination position)

Service

1% free parts;1year warranty after port of destination

 

Why do you choose our product?

1. Why should I choose our product?
There are several reasons you should strongly consider purchasing our product:
*Top raw materials from only the finest plants
*Only professional cost-effective equipment 
*Low prices with high quality revenue producing products
*Increase productivity for your customers( Your customers gain more, they will enjoy buying from you.)
*The best customer service. Quick reply within 24 hours and more.
*Great Warranty

2. How safe are your product?
our product  have been tested and CE certified for safety .
They also meet the American and Australian Standard.

3. Should I keep repair and replacement parts in stock?
Yes, most all commonly required repair and replacement parts should always keep in stock.

4. Are your product designed for commercial use?
All of our product can be used in commercial applications without any problems.

5. Do you offer any custom designs?
Yes,we provide OEM/ODM services to top range partners.Produce a superior product for you by your designs.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours Online
Warranty: 36 Months
Principle: Mixed-Flow Compressor
Samples:
US$ 564/Piece
1 Piece(Min.Order)

|

Order Sample

The standard configuration
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China best Air Compressor Part/Screw Compressor/Air Compressor Part//Brake Lathe/Tire Changer/Car Lift/Auto Scanner/High Pressure Air Compressor/Oilless Air Compressor   air compressor for saleChina best Air Compressor Part/Screw Compressor/Air Compressor Part//Brake Lathe/Tire Changer/Car Lift/Auto Scanner/High Pressure Air Compressor/Oilless Air Compressor   air compressor for sale
editor by CX 2024-02-06

China wholesaler Air Compressor Spare Parts LG Refrigerator Gk080K Compressor for Sale air compressor for car

Product Description

Model Cooling Capacity Motor Input COP Height Discharge Pipe I.D. Suction Pipe I.D.
Btu/h Watt Watt w/w mm mm mm
GK080P 6550 6600 1919 1934 682 702 2.81  2.76  243.60  8.06  9.70 
GK094P 7700 7750 2256 2271 794 824 2.84  2.76  243.60  8.06  9.70 
GK102P 8250 8350 2418 2447 841 870 2.87  2.81  262.60  8.06  12.80 
GK113P 9000 9100 2637 2667 914 938 2.89  2.84  235.60  8.06  9.70 
GK134P 1571 10850 3150 3179 1132 1154 2.78  2.76  262.60  8.06  12.80 
GK141P 11450 11600 3355 3399 1180 1221 2.84  2.78  253.60  8.06  12.80 
GJ151P 12500 12650 3663 3707 1269 1304 2.89  2.84  229.00  9.70  12.80 
GJ189P 15500 15700 4542 4601 1581 1635 2.87  2.81  271.20  9.70  12.80 
GJ208P 17500 17700 5128 5187 1750 1823 2.93  2.85  340.90  9.70  12.80 
GJ230P 19100 19300 5597 5656 1949 2571 2.87  2.81  320.20  9.70  12.80 
GP270P 23100 23400 6769 6857 2347 2392 2.88  2.87  345.30  9.70  16.00 
GP290P 24700 24900 7238 7297 2470 2541 2.93  2.87  406.40  9.70  16.00 
GK080K 8050 2359 805 2.93  253.60  8.06  12.80 
GK102K 10150 2975 1015 2.93  253.60  8.06  12.80 
GK120K 12100 3546 1222 2.90  259.60  8.06  12.80 
GK141K 14200 4162 1434 2.90  259.60  8.06  12.80 
GJ176K 18200 5334 1820 2.93  258.20  9.70  12.80 
GJ208K 21700 6360 2170 2.93  257.90  9.70  12.80 
GJ230K 24000 7034 2400 2.93  237.90  9.70  12.80 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Standard
Warranty: 1 Year
Installation Type: Movable Type
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China wholesaler Air Compressor Spare Parts LG Refrigerator Gk080K Compressor for Sale   air compressor for carChina wholesaler Air Compressor Spare Parts LG Refrigerator Gk080K Compressor for Sale   air compressor for car
editor by CX 2024-02-03

China factory Sullivan D630rh 260HP CHINAMFG Diesel Screw Rotary Air Compressor air compressor for sale

Product Description

 

CHINAMFG CHINAMFG Import And Export Trade Co.,Ltd. is a manufacturer,specialized in the production of blasting drilling

rig,solar pile driver,water well drilling rig and accessories such as portable screw Air compressor,drill pipe,drill

hammer,drill bit,etc.Our company is a backbone enterprise in the industry. Our company is located at the foot of

Mountain Tai which has the reputation of “Chief of the Five Sacred Mountains”, neighboring to ZheJiang -ZheJiang

High-speed Way, with convenient transportation and excellent location. Your satisfaction is our promise. Our

company covers an area of 35,000 square meters, and has more than 160 employees, including 20 engineering

technicians, who all are specialized drilling rig mechanical design talents. Our company has more than 30 sets of

advanced CNC machining equipment and more than 10 sets of special processing equipment. Our company has

our own heat treatment production workshops and surface treatment equipment. On the basis of advanced

production equipment and more than 10 years of experience, our company has developed and produced three

series of products, including high, medium and low-grade air pressure equipment. 15 kinds of products sell well

throughout China, Russia, Kenya, Brazil, India and some other countries in Europe.

Remark:

1. The payment terms: Pay 30% deposit in advance by T/T firstly, then pay the balance70% before delivering the products.
2. The time of delivery: Deliver the products within 2 days after receiving the total price.
3. The quotation validity date:40 days; Machine manufacturing time: 5-7 days;
4. Loading: 1 set machine uses 1*20 feet container; 1*40 feet high container for maximum 4 sets.

…………………………………………………………………………………………. .

R F Q

 

Q1: What’s your delivery time?

A: 15 days to produce, within 3 days if in stock.

 

Q2: What’s methods of payments are accepted?

A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.

 

Q3: What about the shipments and package?

A: 40′ container
Machine in nude packing, spare parts in standard export wooden box.

 

Q4: Have you got any certificate?

A:We have got ISO,CE certificate.

 

Q5: How to control the quality?

A: We will control the quality by ISO and CE requests.

 

Q6: Do you have after-sale service and warranty service ?

A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.

Warranty is 1 year for the machine.

 

Q7: Can I trust your company ?

A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company.Just order from US !

We are factory manufacturer, and we have our own export license .

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Structure Type: Closed Type

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China factory Sullivan D630rh 260HP CHINAMFG Diesel Screw Rotary Air Compressor   air compressor for saleChina factory Sullivan D630rh 260HP CHINAMFG Diesel Screw Rotary Air Compressor   air compressor for sale
editor by CX 2024-02-02

China supplier Zw51ka-Tfp-522 Refrigeration Part Air Compressor for Cold Storage air compressor for sale

Product Description

Compressor 

Product Description

High quality product providers

The compressors applied in the air conditioning industry in diverse applications including split systems, rooftops, packaged units and chillers, scroll compressors are now the most used compression technology replacing reciprocating and screw compressors due to its undeniable superiority.
Several, fully CHINAMFG qualified, multiple compressor assemblies (tandem and trio) are available to be used in large capacity systems to deliver optimal comfort, low operating cost with higher seasonal efficiency.

 

1. High efficiency

2. Good reliability

3. Low noise, low vibration

4. Original and new

5. Refrigerant: R407

 

Features and Benefits

• CHINAMFG Scroll axial and radial compliance for superior reliability and efficiency

• Wide scroll line-up

• Low oil circulation rate

• Superior liquid handling capability

 

• Low sound and vibration level

• Low Total Equivalent Warming Impact

• CHINAMFG qualified tandem and trio configurations for superior seasonal efficiency

 

Application diagram

Model NO. Cooling Capacity (rating point 7.2) nominal hp Displ. cc/rev nom current  FLa Weight (Kg)
ZR22K3PFJ522 5240 1.83 30.7 9.6 26
ZR28K3PFJ522 6970 2.33 39.2 12.9 27.3
ZR28K3EPFJ522 6970 2.33 39.2 12.9 27.3
ZR34K3PFJ522 8260 2.83 46.1 13.6 29.5
ZR34K3EPFJ522 8260 2.83 46.1 13.6 29.5
ZR36K3PFJ522 8850 3 49.5 16.4 29.5
ZR40K3PFJ522 9620 3.33 54.19 17.1 32
ZR42K3PFJ522 10140 3.5 56.8 17.1 30
ZR47K3PFJ522 11500 3.9 64.1 19.3 32.6
ZR68KCPFJ522 16800 5.75 93 28.2 43.5
ZR28K3TFD522 6970 2.33 39.2 5 26
ZR28K3ETFD522 6970 2.33 39.2 5 26
ZR36K3TFD522 8850 3 49.5 5.7 29.5
ZR40K3TFD522 9260 3.33 51.2 6.4 32
ZR47KCTFD522 11400 3.9 63.2 7.2 32.6
ZR47KCETFD522 11400 3.9 63.2 7.2 32.6
ZR48KCTFD522 11500 4.1 67.2 7.5 38
ZR48KCETFD522 11500 4.1 67.2 7.5 38
ZR54KCTFD522 13000 4.5 73.2 8.2 35.5
ZR57KCTFD522 13660 4.75 76.9 8.2 36
ZR57KCETFD522 13660 4.75 76 8.2 36
ZR61KCTFD522 14700 5 82.4 10 35.9

 

Due to too many models not clearly listed, you can consult us separately for specifications

Production and Manufacturing

 

Professional and experienced compressor manufacturers, only to provide better compressors. 

 

After strict inspection and screening.

Application

 

Company Profile

ZHangZhoug Damai Refrigeration Technology Co., Ltd is located in Shaoxin,ZHangZhoug.Damai is a company specializing in refrigeration and air conditioning equipment.Our main equipment is Cold room,Evaporator,Condenser,Condensing unit,Compressor,Cold room panel/door,Flake ice machine,Block ice machine and so on.We have more than 10 years of experience in the field of cold storage, with high-quality technology and professional product knowledge.We are able to provide consumers with professional and high-quality technical services.The quality of our products can be guaranteed.

 

 

Why choose our company ?
1.Because our company has CAC official .
2.We have a good one-year after-sales service.
3.We have over 20 years of sales experience.  
4.We have our own factory.
5.We will try our best to provide a professional response as soon as possible.

Product advantages
1.Quite operation.
2.Seamless connection.
3.Easy installation
4.Beautiful and elegant placement of circuit devices.
5.Using the best equipment.
6.Not easily damaged.

 

FAQ

1: How long is the delivery time? 
It takes within 1 month from receipt of the deposit to preparation of the goods.

2: How long is the quality guarantee period?
The warranty period is 1 year, and the after-sales service is available 24 hours.

3: What is your price?
Our FOB price is based on quantity, material and size you required.The more machines you order, the lower price we will give! Also CIF CNF price is the same.

4: What can you do for us?
All material/ size are available, also we can customize products as your requirements. Any questions, pls don’t hesitate to contact us.

After Sales Service

Pre-sales:
We provide assistance to our customers, provide valid information according to the requirements of our guests, answer questions, leave a professional impression, and lay the foundation for future sales.

Selling:
let our customers know more about our products, and enthusiastically answering questions for customers and providing customers with a pleasant buying experience.

After-sales:
After the products are sold, the professionals provide training services, check and maintain the products regularly, if there is problems for the quality,Will solve it for customers in time.
 

If you are interested in our products, please contact us as soon as possible.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Lubricated
Samples:
US$ 450/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China supplier Zw51ka-Tfp-522 Refrigeration Part Air Compressor for Cold Storage   air compressor for saleChina supplier Zw51ka-Tfp-522 Refrigeration Part Air Compressor for Cold Storage   air compressor for sale
editor by CX 2024-02-01

China Standard Portable Air Compressor Rotary Screw Air Compressor for Sale portable air compressor

Product Description

Product Description 

Product Display 
Company Profile 

CHINAMFG CHINAMFG Import And Export Trade Co.,Ltd. is a manufacturer,specialized in the production of blasting drilling rig,solar pile driver,water well drilling rig and accessories such as portable screw air compressor,drill pipe,drill hammer,drill bit,etc.Our company is a backbone enterprise in the industry. Our company is located at the foot of Mountain Tai which has the reputation of “Chief of the Five Sacred Mountains”, neighboring to ZheJiang -ZheJiang High-speed Way, with convenient transportation and excellent location. Your satisfaction is our promise. Our company covers an area of 35,000 square meters, and has more than 160 employees, including 20 engineering technicians, who all are specialized drilling rig mechanical design talents.  Our company has more than 30 sets of advanced CNC machining equipment and more than 10 sets of special processing equipment. Our company has our own heat treatment production workshops and surface treatment equipment.  On the basis of advanced production equipment and more than 10 years of experience, our company has developed and produced 3 series of products, including high, medium and low-grade air pressure equipment. 15 kinds of products sell well throughout China, Russia, Kenya, Brazil, India and some other countries in Europe. 
FAQ

Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
 
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
 
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set, 
Machine in nude packing, spare parts in standard export wooden box.
 
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
 
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
 
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for  operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year  for the machine.
 
Q7: Can I trust your company ?
 A: Our company has been certificated by Chinese government ,and verified by SGS. Just order from US !  
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: One Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Cylinder Position: Horizontal

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China Standard Portable Air Compressor Rotary Screw Air Compressor for Sale   portable air compressorChina Standard Portable Air Compressor Rotary Screw Air Compressor for Sale   portable air compressor
editor by CX 2024-02-01

China supplier Luy130d-7 CHINAMFG Air CHINAMFG 7 Bar 75 Kw for Road Construction Motor Screw Air Compressor on Sale mini air compressor

Product Description

Model Name LUY050-7 LUY085-14 LUY100-10 LUY100-12 LUY118-7 LUY120-14 LUY130-13 LUY150-15 LUY160-17 LUY235-9 LUY220-10
Working pressure, bar(psi) 7 (100) 14 (205) 10 (150) 12 (175) 7 (100) 14 (205) 13(190) 15 (220) 17 (250) 8.6 (125) 10 (150)
Flow, l/s|cfm|m3/min 83|177|5 142|300|8.5 167|353|10 167|353|10 197|420|11.8 200|424|12 217|460|13 250|530|15 267|565|16 396|830|23.5 367|780|22
Noise sound level (at 7m distance, dBA ) 70±3 79±3 79±3 79±3 79±3 83±3 83±3 83±3 83±3 79±3 79±3
Fuel tank capacity, l 67 185 120 120 120 180 180 250 250 300 300
Compressor oil capacity, l 8 25 26 26 26 23 30 32 32 55 55
Outlet valves, qty x size 3xG3/4 3xG3/4 1xG1  1/2 3xG3/4 1xG1  1/3 3xG3/4 1xG1  1/4 3xG3/4 1xG1  1/5 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission           Tier 3 Tier 3 Tier 3 Tier 3 Tier 2 Tier 2
Engine maker Kubota Cummins Cummins Cummins Cummins Yuchai Cummins Yuchai Yuchai Cummins Cummins
Engine model V1505T 4BTAA3.9-C125 YC4A130-H311 YC4A130-H311 YC4A130-H311 YC6J175-H301 QSB5.9-C180-31 YC6A205-H300 YC6A240-H301 6CTA8.3-C260 6CTA8.3-C260
Engine power, Kw 33 93 96 96 96 129 132 151 176 194 194
Norminal engine speed, rpm 2950 2300 2300 2300 2300 2300 2400 2050 1950 2000 2000
Unloading engine speed, rpm 1950 1500 1400 1400 1400 1400 1400 1200 1200 1500 1500
Engine inspiration torbue charger torbue charger torbue charger torbue charger torbue charger torbue torbue torbue torbue torbue torbue
Length, mm 2960 3700 3700 3700 3700 4322 3000 4322 4322 3780 3780
Width, mm 1350 1790 1790 1790 1790 1950 2000 1950 1950 1950 1950
Height, mm 1420 1900 1900 1900 1900 1980 2190 1980 1980 2260 2260
Weight, kg 750 1650 1650 1650 1650 2250 1990 2550 2550 2990 2990

 

Model Name LUY200-10 LUY170-17 LUY180-19 LUY180-20 LUY210-17 LUY230-14 LUY250-12 LUY270-10 LUY290-9 LUY215-21 LUY290-23
Working pressure, bar(psi) 10(150) 17(250) 19 (275) 20(290) 17 (250) 14 (205) 12(175) 10(150) 8.6(125) 21(305) 23(335)
Flow, l/s|cfm|m3/min 336|706|20 286|600|17 300|635|18 300|635|18 350|745|21 386|815|23 417|885|25 450|955|27 486|1571|29 357|760|21.5 486|1571|29
Noise sound level (at 7m distance, dBA ) 79±3 79±3 83±3 83±3 83±3 79±3 79±3 79±3 79±3 79±3 83±3
Fuel tank capacity, l 300 300 300 325 300 470 470 470 470 512 500
Compressor oil capacity, l 55 55 55 60 55 65 65 65 65 75 75
Outlet valves, qty x size 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission Tier 2 Tier 2 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3
Engine maker Cummins Cummins Yuchai Cummins Yuchai Cummins Cummins Cummins Cummins Cummins Yuchai
Engine model 6CTA8.3-C260 6CTA8.3-C260 YC6A260-H300 QSB6.7-C260-32 YC6A260-H300 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 YC6MK340-H300
Engine power, Kw 194 194 191 191 191 242 242 242 242 242 250
Norminal engine speed, rpm 2000 2000 1900 2000 1900 2000 2000 2000 2000 2000 1900
Unloading engine speed, rpm 1500 1500 1200 1300 1200 1300 1300 1300 1300 1300 1300
Engine inspiration torbue torbue torbue torbue torbue torbue torbue torbue charger torbue charger torbue charger torbue
Length, mm 3780 3780 4404 4550 4404 5260 5260 5260 5260 5260 3850
Width, mm 1950 1950 1950 1770 1950 1800 1800 1800 1800 2040 2100
Height, mm 2260 2260 2296 2230 2270 2630 2630 2630 2630 2630 2690
Weight, kg 2990 2990 3330 3920 3330 4835 4835 4835 4835 4850 4100

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Technical Support, Online Support, Spare PAR
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: /
Customization:
Available

|

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China supplier Luy130d-7 CHINAMFG Air CHINAMFG 7 Bar 75 Kw for Road Construction Motor Screw Air Compressor on Sale   mini air compressorChina supplier Luy130d-7 CHINAMFG Air CHINAMFG 7 Bar 75 Kw for Road Construction Motor Screw Air Compressor on Sale   mini air compressor
editor by CX 2024-01-23

China factory Chinese CHINAMFG Factory Price Intelligent Professional High Quality Good Service Electric Motor Powered Direct Screw Air Compressor with CE and ISO Certification air compressor for sale

Product Description

BEEST—-AIR COMPRESSOR&SOLUTION

Moair Energy Conservation Durable Two Stage Screw Air Compressor with Double Permanent Magnet Motor

1. Company background

ZheJiang CHINAMFG International Trade Co., Ltd. is the senior partner of HangZhou CHINAMFG Compressor Co., Ltd , we are committed to the sales and after-sales service of air compressors in Southeast Asia, and have stores in Indonesia.
We are the professional manufacturer of the air compressor products of various types including the permanent-magnet synchronous variable-frequency series,permanent-magnet synchronous low-pressure series,permanent-magnet sunchronous two-stage compressors series,etc.
More than 10 years of professional screw compressors manufacturing technology,bringing the international first-class permanent magnet synchronous drive and control technologies.

2. Product introduction
 

L series permanent magnet rotary screw air compressor 3-5 bar are specially developed for industries that need low air pressure operation such as textile, cement, glass and food. With a low pressure range from 3 bar to 5 bar, the power range of L series is from 37kw to 132kw and the air delivery of that is from 8.34m3/min to 85.82m3/min.
The main engine is a low pressure design developed by CHINAMFG instead of an ordinary one. When a low pressure compressor is equipped with a common main engine, the air will be largely compressed first and then released, which will lead to unnecessary high energy consumption. However, a professional low pressure main engine will save 10%-20% energy compared with common compressors.
The industrial rotary screw air compressors are equipped with motors with a protection degree of IP54 and inovance frequency inverter, which turn out to be effective, energy-saving, structure-compact and lower noise.

3.Core components

Motor 

  • More stable: no mechanical transmission troubles
    There is no gear shaft in the air compressor and the effective permanent magnet motor and the male rotor are directly connected on 1 shaft without gear drive, which can eliminate pitting of gear or hidden troubles of tooth fracture.
    Without shaft coupling, 2 integrated PM motors directly drive 2 airends of the air compressor, avoiding the hidden troubles of shaft coupling failure.
  • More energy-savings: the airend is always in a smooth running state
    The 2 stage 3 phase permanent magnet rotary gear screw air compressor of CHINAMFG is powered by 2 independent PM motors and 2 independent inverters, which is intelligently controlled such as keep the airend running at a best level-pressure point by controlling discharge pressure and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of air compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
  • More effective: high-efficiency permanent magnet motor and no gear drive loss.
    With a motor of a high protection degree of IP54, it is more energy-saving and it can stay effective at low frequency and low speed.
  • More environment-friendly operation with lower noise
    No noise of motor bearings, gear meshing and coupling transmission.
  • More structure-compact
    The volume of PM motor is small and the structure is compact, which can save much space.

    4.Specifications and parameters

     
     

    Examples of comparison of low pressure compressor’s and common compressor’s working conditions in the low pressure state:
    When users’ actual need for pressure is 0.4MPa, however, if a 0.8MPa 1 was used in this case, the compressor will compress the air to 0.8MPa first and then reduce it to 0.4MPa by pressure-reducing valve or other ways. That is to say, the 0.8MPa energy consumption is taken by users.

    For example, the actual air delivery of 45kw/0.4MPa low pressure compressor of CHINAMFG is 10.84 m3min and the actual work is 44.8KW and the specific power is 4.13kw/m3. However, the specific power of common 45kw/0.8MPa compressor is 8.1kw/m3, according to the 2 level energy efficiency calculation. In this case, professional 0.4MPa low pressure compressor can save nearly 49% energy compared with common ones.

    5. Principle of energy-saving
     

    • Change the traditional induction motor with high-efficiency technology of permanent magnet rotary screw motor, thus reducing the consumption in transmission.
    • Powered by 2 independent PM motors and 2 independent inverters, the compressor is intelligently controlled such as keep the airend running at a best level-pressure point by controlling pressure of air flow and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
    • Because the gear ratio is fixed, point efficiency is emphasized in this case. That is to say, only with fixed rotary speed and rated pressure did it have the best specific power. When running in a state of variable speed and variable frequency, considering the fixed speed of gear, interstage pressure will not reach the best one. Rotational speed declining while energy consumption not declining at the same time, it is not suitable for running in variable speed and variable frequency state.

       

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    After-sales Service: Online Service
    Warranty: One Year
    Lubrication Style: Lubricated
    Cooling System: Air Cooling
    Power Source: AC Power
    Cylinder Position: Horizontal

    air compressor

    Can air compressors be used for painting and sandblasting?

    Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

    Painting:

    Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

    • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
    • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
    • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

    Sandblasting:

    Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

    • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
    • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
    • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

    When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

    Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

    air compressor

    What is the impact of altitude on air compressor performance?

    The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

    1. Decreased Air Density:

    As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

    2. Reduced Airflow:

    The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

    3. Decreased Power Output:

    Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

    4. Extended Compression Cycle:

    At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

    5. Pressure Adjustments:

    When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

    6. Compressor Design:

    Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

    7. Maintenance Considerations:

    Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

    When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

    air compressor

    What are the key components of an air compressor system?

    An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

    1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

    2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

    3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

    4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

    5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

    6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

    7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

    8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

    9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

    10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

    These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

    China factory Chinese CHINAMFG Factory Price Intelligent Professional High Quality Good Service Electric Motor Powered Direct Screw Air Compressor with CE and ISO Certification   air compressor for saleChina factory Chinese CHINAMFG Factory Price Intelligent Professional High Quality Good Service Electric Motor Powered Direct Screw Air Compressor with CE and ISO Certification   air compressor for sale
    editor by CX 2024-01-18