Product Description
Product Description
Suitable for various sizes of storage and preservation, as well as freezing products, cold storage facilities can be equipped with compressors of different powers, such as 15P, 20P, 25HP, and 30 horsepower, to meet the refrigeration needs of medium and low-temperature preservation cold storage, covering a wide range of cold storage scenarios from preservation to freezing.
Product Feature
I. Reliability
Mature technology, compact structure Small size, low space requirement
II. Compliance with Standards
High-precision machining process CNC center housing processing
Special processes ensure three-hole concentricity Excellent dead point clearance processing technology
III. Stability
Good stability Low machine vibration and noise production
IV. Versatility in Various Working Conditions
Use of R22, R404, etc., meets international environmental requirements, suitable for low temperature, medium high temperature, etc.
V. Electronic Protection Devices
PTC temperature monitoring device, effectively protects the motor
VI. Material Selection
Chrome-plated piston rings Aluminum pistons Hardened crankshaft Low friction shaft bushings
Using wear-resistant drive components, long service life
VII. Rational Design
Efficient valve plate group design (large refrigeration capacity, low energy consumption) Efficient suction and exhaust compression ratio
VIII. Universal Compatibility
High degree of interchangeability of parts, easy disassembly, repair, and maintenance
Product Parameters
| Model | Nominal Power HP/KW | Disp. m³/h 50Hz |
Number of Cylinders ×Diameter ×Stoke |
Exhaust & Suction Valve mm/IN | Oil Volume L |
Power V/φ/Hz | Electrical Parameter | Crankcase Heater (220V)W | Oil Supply Method | Weight (Include Oil) Kg | ||
| DL Exhaust Valve | SL Suction Valve | Max Operating Current(A) | Starting/ Locked Current(A) | |||||||||
| 2YD-2.2 | 2/1.5 | 13.4 | 2×Φ50×39.3 | φ16 | φ22 | 1.5 | 220-240△/ 380-420Y/3/50 265-290△/ |
11.9/6.9 | 53.7/30.7 | 120 | Centrifugal lubrication | 67.5 |
| 2YG-3.2 | 3/2.2 | 13.4 | 2×Φ50×39.3 | φ16 | φ22 | 1.5 | 13.5/7.8 | 64/37 | 120 | 70.5 | ||
| 2YD-3.2 | 3/2.2 | 16.2 | 2×Φ55×39.3 | φ16 | φ22 | 1.5 | 14.8/8.5 | 64/37 | 120 | 70 | ||
| 2YG-4.2 | 4/3 | 16.2 | 2×Φ55×39.3 | φ16 | φ22 | 1.5 | 16.4/9.4 | 76.6/44.2 | 120 | 70 | ||
Model Cross Reference
| No. | Power Supply | Description | Model DMZL | Bizter Cross reference Model (new model) |
Bizter reference Previous model | HP | KW | Displacement (M³/h)/50HZ |
| 1 | 380-420V/3PH/50HZ;440-480V/3PH/60HZ | 2 cylinders | 2YD-2.2 | 2DES-2 | 2DC-2.2 | 2 | 1.5 | 13.5 |
| 2 | 2YG-3.2 | 2DES-3 | 2DC-3.2 | 3 | 2.2 | 13.5 | ||
| 3 | 2YD-3.2 | 2CES-3 | 2CC-3.2 | 3 | 2.2 | 16.2 | ||
| 4 | 2YG-4.2 | 2CES-4 | 2CC-4.2 | 4 | 3 | 16.2 | ||
| 5 | ||||||||
| 6 | 4 cylinders Small Octagonal | 4YD-3.2 | 4FES-3 | 4FC-3.2 | 3 | 2.2 | 18.1 | |
| 7 | 4YG-5.2 | 4FES-5 | 4FC-5.2 | 5 | 3.7 | 18.1 | ||
| 8 | 4YD-4.2 | 4EES-4 | 4EC-4.2 | 4 | 3 | 22.7 | ||
| 9 | 4YG-6.2 | 4EES-6 | 4EC-6.2 | 6 | 4.4 | 22.7 | ||
| 10 | 4YD-5.2 | 4DES-5 | 4DC-5.2 | 5 | 3.7 | 26.84 | ||
| 11 | 4YG-7.2 | 4DES-7 | 4DC-7.2 | 7 | 5.1 | 26.84 | ||
| 12 | 4YD-6.2 | 4CES-6 | 4CC-6.2 | 6 | 4.4 | 32.48 | ||
| 13 | 4YG-9.2 | 4CES-9 | 4CC-9.2 | 9 | 6.6 | 32.48 | ||
| 14 | 4YG-10.2 | 4VES-10 | 4VES-10.2 | 10 | 7.5 | 34.7 | ||
| 15 | 4 cylinders Medium Octagonal |
4YD-8.2 | 4TES-9 | 4TCS-8.2 | 8 | 5.5 | 41.33 | |
| 16 | 4YG-12.2 | 4TES-12 | 4TCS-12.2 | 12 | 8.8 | 41.33 | ||
| 17 | 4YD-10.2 | 4PES-12 | 4PCS-10.2 | 10 | 7.5 | 48.5 | ||
| 18 | 4YG-15.2 | 4PES-15 | 4PCS-15.2 | 15 | 10.5 | 48.5 | ||
| 19 | 4YD-12.2 | 4NES-14 | 4NCS-12.2 | 12 | 8.8 | 56.25 | ||
| 20 | 4YG-20.2 | 4NES-20 | 4NCS-20.2 | 20 | 15 | 56.25 | ||
| 21 | ||||||||
| 22 | Large 4 cylinders | 4VD-15.2 | 4HE-18 | 4H-15.2 | 15 | 10.5 | 73.6 | |
| 23 | 4VG-25.2 | 4HE-25 | 4H-25.2 | 25 | 18.5 | 73.6 | ||
| 24 | 4VD-20.2 | 4GE-23 | 4G-20.2 | 20 | 15 | 84.5 | ||
| 25 | 4VG-30.2 | 4GE-30 | 4G-30.2 | 30 | 22 | 84.5 | ||
| 26 | ||||||||
| 27 | Large 6 cylinders | 6WD-25.2 | 6HE-28 | 6H-25.2 | 25 | 18.5 | 110.5 | |
| 28 | 6WG-35.2 | 6HE-35 | 6H-35.2 | 35 | 25.5 | 110.5 | ||
| 29 | 6WD-30.2 | 6GE-34 | 6G-30.2 | 30 | 22 | 126.8 | ||
| 30 | 6WG-40.2 | 6GE-40 | 6G-40.2 | 40 | 30 | 126.8 | ||
| 31 | 6WD-40.2 | 6FE-44 | 6F-40.2 | 40 | 30 | 151.6 | ||
| 32 | 6WG-50.2 | 6FE-50 | 6F-50.2 | 50 | 37 | 151.6 | ||
| 33 | ||||||||
| 34 | Double Stage | 6WDS-20.2 | S6H-20.2 | S6H-20.2 | 20 | 15 | 110.5 | |
| 35 | 6WDS-25.2 | S6G-25.2 | S6G-25.2 | 25 | 18.5 | 126.8 | ||
| 36 | 6WDS-30.2 | S6F-30.2 | S6F-30.2 | 30 | 22 | 151.6 |
Company Profile
FAQ
Q1: Are you trading company or manufacturer ?
A1: We are manufacturer.
Q2: Do you have your own R&D team?
A2: Yes, we can customize products as your requirements.
Q3: How about the payment methods?
A3: We support T/T, L/C.
Q4: Can we be your distributor?
A4: We are looking for distributors and agents all over the world.
Q5: How’s the package?
A5: Normally are wooden package, but also we can pack it according to your requirements.
Q6: How long is the delivery time?
A6:It takes within 1 month from receipt of the deposit to preparation of the goods.
Q7: How long is the quality guarantee period?
A7:The warranty period is 1 year, and the after-sales service is available 24 hours.
Q8: What is your price?
A8:Our price is based on quantity, material and size you required.The more machines you order, the lower price we will give!
Q9: I want to know more details, what to do?
A9: Please send us an inquiry with your email address if you seldom use Made-in-China, or just press the button chatting online, We are here for you.
We are a manufacturer that supports wholesale and customization, with good quality and cheap prices. If you need to order, please contact us via email. We will provide you with a quote promptly after receiving your inquiry. Wishing you a pleasant life!
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by lmc 2024-11-19
China OEM Portable Hermetic CHINAMFG 1HP Rotary Compressor for Air Condition 2p14c3r225b wholesaler
Product Description
Product Description
Introduction to condensing units:
A scroll compressor is a type of device commonly used in heating, ventilation, air conditioning, and refrigeration systems. It operates using 2 spiral-shaped scrolls, 1 stationary and 1 orbiting, which trap and compress refrigerant gas between their interlocking spirals, effectively pumping it through the system. Known for its reliability, efficiency, and quiet operation, the scroll compressor is a key component in many modern cooling and heating solutions.
The features as follows:
High Efficiency: Scroll compressors are known for their energy efficiency due to their continuous compression process which minimizes leakage and loss of pressure.
Reliability: With fewer moving parts compared to other types of compressors, scroll compressors have a lower risk of mechanical failure, offering greater reliability.
Quiet Operation: The smooth motion of the scrolls results in less vibration and noise, making them ideal for residential and noise-sensitive environments.
Longevity: Their simple design and fewer moving parts contribute to a longer lifespan compared to other compressor types.
Smooth Performance: The continuous compression process ensures a smooth flow of refrigerant, resulting in stable operation and better temperature control.
Versatility: Scroll compressors can be used in a variety of applications including air conditioning, refrigeration, and heat pump systems.
Ease of Maintenance: Due to their straightforward design, scroll compressors are relatively easy to maintain and repair.
In addition to product research and production, we also provide professional pre-sales consultation and after-sales service. Our team is able to provide personalized solutions based on the specific needs of customers and provide technical support in equipment installation, debugging, and maintenance.
Type
Model Analysis Table
Cold-room For Each Application
Different Options
Our New Cold Room
Panels
Doors
Condensing Units
Air Cooler
Packaging & Shipping
|
Package Size |
10000.00cm * 10000.00cm * 10000.00cm |
|
Package Gross Weight |
100000.000kg |
Our protective packaging
Unit:
1. Wooden box: fix the compressor and fan to prevent shaking
2. Bottom support: easy to load and unload to prevent packaging damage
The protective packaging of the PU Panel:
1. film packaging to prevent moisture, rust and transportation scratches
2. Four-corner cardboard protection to prevent impact
3, neatly placed, avoid shaking
About Us
our customers are all over the world!
FAQ
Q1: Do you accept customized orders?
A1: We can according to you special requirements for production of products.
Q2: What’s your warranty policy?
A2: 2 year for machine and 3 year for compressor.
Q3: What is your product quality?
A3: Our products are of premium quality, thanks to careful material selection, rigorous multi-stage inspections, adherence to international standards, and the use of advanced technology.
Q4: What is the delivery time ?
A4: We will deliver within 15-30 days after receiving the deposit.
Q5: Do you make the testing beforeshipment?
A5: Yes, All products are checked before shipment.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by lmc 2024-11-19
China OEM Zb29kqe-Pfj-558 High Quality Hermetic CHINAMFG Scroll Compressor Air Compressor for Refrigeration Condensing Unit with Great quality
Product Description
ZB29KQE-PFJ-558 High Quality Hermetic CHINAMFG Scroll Compressor Air Compressor for Refrigeration Condensing Unit
Technical Specification
| model | ZB29KQE-PFJ-558 |
| horse power | 4 |
| refrigerant | R410A |
| power source | 220-240V/3ph/50hz,265V/3PH/60HZ |
| Phrase | 3 |
| Color | Black |
| Connection | Braze |
| MOQ | 1 |
Technical Specification for ZR Series
More models for choosing
220-240V; 50Hz, 1 Phase
ZR26KM-PFZ-522 ZR28KM-PFZ-582 ZR30KM-PFZ-522 ZR32KS-PFJ-620 ZR34KH-PFJ-522 ZR36KH-PFJ-522 ZR39KH-PFJ-522 ZR42K3-PFJ-522 ZR45K3-PFJ-522 ZR47K3-PFJ-522 ZR48K3-PFJ-522 ZR61KC-PFZ-522 ZR68KC-PFJ-522 ZR26KM-PFZ-522 ZR28KM-PFZ-582 ZR30KM-PFZ-522 ZR32KS-PFJ-620 ZR34KH-PFJ-522 ZR36KH-PFJ-522 ZR39KH-PFJ-522 ZR42K3-PFJ-522
ZR45K3-PFJ-522 ZR47K3-PFJ-522 ZR48K3-PFJ-522 ZR61KC-PFZ-522
208-230V; 60Hz, 1 Phase
ZR28KM-PFV ZR28KC-PFV ZR32K3-PFV ZR34KC-PFV ZR36KC-PFV ZR42KC-PFV ZR45KC-PFV ZR48KC-PFV ZR54KC-PFV ZR57KC-PFV ZR61KC-PFV ZR68KC-PFV
380-420V; 50Hz, 3 Phase
ZR22K3-TFD ZR24K3-TFD ZR26K3-TFD ZR28K3-TFD ZR32K3-TFD ZR34KH-TFD ZR36KH-TFD ZR39KH-TFD ZR42K3-TFD ZR45KC-TFD ZR47KC-TFD ZR48KC-TFD ZR54KE-TFD ZR54KC-TFD ZR57KE-TFD ZR57KC-TFD ZR61KE-TFD ZR61KC-TFD ZR68KC-TFD ZR72KC-TFD ZR81KC-TFD ZR84KC-TFD ZR94KC-TFD ZR108KC-TFD ZR125KC-TFD ZR144KC-TFD ZR160KC-TFD ZR190KC-TFD ZR250KC-TWD ZR310KC-TWD ZR380KC-TWD
200-230V/380V/460V; 60Hz, 3 Phase
ZR34K3-TF5 ZR34K3-TF7 ZR36K3-TF5 ZR45KC-TF5 ZR47KC-TF5 ZR47KC-TF7 ZR48KC-TF5 ZR48KC-TF7 ZR54KC-TFD ZR54KC-TF5 ZR54KC-TF7 ZR57KE-TF5 ZR57KC-TFD ZR57KC-TF5 ZR57KC-TF7 ZR61KS-TF5 ZR61KS-TF7 ZR61KC-TFD ZR61KC-TF5 ZR61KC-TF7 ZR68KC-TFD ZR68KC-TF5 ZR68KC-TF7 ZR72KC-TFD ZR72KC-TF5 ZR72KC-TF7 ZR81KC-TFD ZR81KC-TF5 ZR81KC-TF7 ZR84KC-TFD ZR84KC-TF5 ZR84KC-TF7 ZR94KC-TFD ZR94KC-TF5 ZR94KC-TF7 ZR108KC-TFD ZR108KC-TF5 ZR108KC-TF7 ZR125KC-TFD ZR125KC-TF5 ZR125KC-TF7 ZR144KC-TFD ZR144KC-TF5 ZR144KC-TF7 ZR160KC-TFD ZR160KC-TF7 ZR160KC-TW5
ZR190KC-TFD ZR190KC-TW5 ZR190KC-TW7 ZR250KC-TWD ZR250KC-TW5 ZR250KC-TW7 ZR310KC-TWD ZR310KC-TW7 ZR310KC-TWC ZR380KC-TWD ZR380KC-TW5 ZR380KC-TW7 ZR380KC-TWC ZR34K3-TF5-522 ZR34K3-TF7-522 ZR36K3-TF5-522
ZR45KC-TF5-522 ZR47KC-TF5-522 ZR47KC-TF7-522 ZR48KC-TF5-522 ZR54KC-TFD-522 ZR54KC-TFD-420 ZR54KC-TF7-522 ZR57KE-TF5-522 ZR57KC-TF5-522 ZR57KC-TF7-522 ZR61KS-TF5-522 ZR72KC-TF5-522 ZR72KC-TF7-522 ZR84KC-TF5-522
380V; 50Hz, 3 Phase
VR30KM-TFP VR32KS-TFP VR34KF-TFP VR48KS-TFP VR50KS-TFP VR52KS-TFP VR54KS-TFP VR57KF-TFP VR57KS-TFP VR61KF-TFP VR84KS-TFP VR94KS-TFP VR108KS-TFP VR125KS-TFP VR144KS-TFP VR160KS-TFP VR190KS-TFP
220V; 50Hz, 1 Phase
VR28KM-PFS VR30KM-PFS VR31KM-PFS VR34KF-PFS
380-420V; 50Hz, 3 Phase
ZR49KCE-TFD ZR54KCE-TFD ZR54KE-TFD ZR57KE-TFD ZR57KCE-TFD ZR61KE-TFD ZR61KCE-TFD ZR68KCE-TFD ZR72KCE-TFD ZR81KCE-TFD ZR84KCE-TFD ZR94KCE-TFD ZR108KCE-TFD ZR125KCE-TFD ZR144KCE-TFD ZR160KCE-TFD ZR190KCE-TFD ZR250KCE-TWD ZR310KCE-TWD ZR380KCE-TWD
208-230V; 60Hz, 1 Phase
ZR61KCE-PFV ZR68KCE-PFV
200-230V/380V/460V; 60Hz, 3 Phase R407C
ZR49KCE-TFD ZR49KCE-TF5 ZR49KCE-TF7 ZR54KSE-TF5 ZR54KCE-TFD ZR54KCE-TF5 ZR54KCE-TF7 ZR57KE-TF5 ZR57KCE-TFD ZR57KE-TF5 ZR61KSE-TF5 ZR61KSE-TF7 ZR61KCE-TFD ZR61KCE-TF5 ZR68KCE-TFD ZR68KCE-TF5 ZR68KCE-TF7 ZR72KCE-TFD
ZR72KCE-TF5 ZR72KCE-TF7 ZR81KCE-TFD ZR81KCE-TF5 ZR81KCE-TF7 ZR84KCE-TFD ZR84KCE-TF5 ZR84KCE-TF7 ZR94KCE-TFD ZR94KCE-TF5 ZR94KCE-TF7 ZR108KCE-TFD ZR108KEC-TF5 ZR108KCE-TF7 ZR125KCE-TFD ZR125KCE-TF5 ZR125KCE-TF7 ZR144KCE-TFD ZR144KCE-TF5 ZR144KCE-TF7 ZR160KCE-TFD ZR160KCE-TF7 ZR160KCE-TW5 ZR190KCE-TFD ZR190KCE-TW5 ZR190KCE-TW7 ZR250KCE-TWD ZR250KCE-TW5 ZR250KCE-TW7 ZR250KCE-TWC ZR310KCE-TWD ZR310KCE-TW7 ZR310KCE-TWC ZR380KCE-TWD ZR380KCE-TW5 ZR380KCE-TW7 ZR380KCE-TWC
380V; 50Hz, 3 Phase R407C
VR84KSE-TFP VR94KSE-TFP VR108KSE-TFP VR125KSE-TFP VR144KSE-TFP VR160KSE-TFP VR190KSE-TFP
208-230V; 60Hz, 1 Phase R407C
ZR61KCE-PFV ZR68KCE-PFV
380-420V; 50Hz, 3 Phase R134a
ZR49KCE-TFD ZR54KE-TFD ZR57KE-TFD ZR61KE-TFD ZR61KCE-TFD ZR68KCE-TFD ZR72KCE-TFD ZR81KCE-TFD
ZR84KCE-TFD ZR94KCE-TFD ZR108KCE-TFD ZR125KCE-TFD ZR144KCE-TFD ZR160KCE-TFD ZR190KCE-TFD
ZR250KCE-TWD ZR310KCE-TWD ZR380KCE-TWD
Refrigeration Compressors Scope
We are specialized in refrigeration compressors, including rotary, scroll, piston, screw, hermetic, semi-hermetic all kinds of brands refrigeration compressors.
1.Rotary compressor:Toshiba,Panasonic, CHINAMFG LG
2.Scroll compressor:Copeland,Dan-foss performer,hitachi,Dakin,Sanyo
3.Piston hermetic compressor:Tecumseh CHINAMFG MT,NTZ,MTZ series.
4.Semi-hermetic Reciprocating Compressor:Copeland,Bit-zer,Carrier
5.Screw compressor :Bit-zer ,Hitachi
Brand Range
Cope-land Scroll Compressor ZR28K3E-TFD-522 Home Air Conditioner Compressor Prices
Workshop
Cope-land Scroll Compressor ZR28K3E-TFD-522 Home Air Conditioner Compressor Prices
FAQ
1. What is the price for refrigeration compressor?
The price is decided by Quantity .
2. How about samples?
Sample Lead Time: 5 working days
Sample Fee:
1).It’s free for all for a regular customer
2).For new customers, we will charge first, it is fully refundable when order confirmed.
3. How many days for shipping?
Shipping Methods and Lead Time:
By Express: 3-5 working days to your door (DHL, UPS, TNT, FedEx…)
By Air: 5-8 working days to your airport
By Sea: Pls advise your port of destination, the exact days will be confirmed by our forwarders, and the following lead time is for your reference. Europe and America (25 – 35 days), Asia (3-7 days), Australia ( 16-23 days)
4. What is the Terms of Payment?
Credit Card,T/T, L/C, Western Union; 30% T/T in advance, 70% before delivery.
5. Packaging & Shipping ?
Pallet, wooden case or with outer carton, or as customers’ specific requirements.
6. Why choose your company?
We are focusing on all aspects of refrigeration compressor, high quality and nice prices.
We strictly implement the rules according to the quality standard in every aspects from the purchase of raw material to the production process and outgoing of products.
Great service and Superior quality is provided all the time…
Packaging & Shipping Packing: Carton, wooden box and pallet, or as customers’ requirements.
Shipping: By Express (DHL /UPS /TNT /FedEx /EMS), By Air, By Sea
Pakaging and shipping
HVAC&R Exhibition
Contact Us
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | on-Line Service |
|---|---|
| Warranty: | 6 Months |
| Installation Type: | Stationary Type |
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| HP: | 4HP |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2024-01-11