Tag Archives: rotary compressor r134a

China factory Misubishi Inverter Rotary Compressor Double Cylinder Rotor Enthalpy Increase R410A, R32, R134A for Refrigeration for Air Condition air compressor lowes

Product Description

 

Series Model Displ. Capacity Power  COP Capacitor Dimension(A) Dimension(B)
cm3/rev w Btu/h w w/w μF/V mm mm
K KN083VAMMC 8.3 2,571 6,858 695 2.89 25/380 268.2 234.8
KN092VEHMC 9.2 2,260 7,711 795 2.84 25/400 263.2 234.8
KN104VGMMC 10.4 2,520 8,598 880 2.86 25/400 264.7 239.3
R RN125VHFMC 12.5 3,100 10,577 1,030 3.01 30/400 264.9 240.8
RN135VHEMC 13.5 3,340 11,396 1,120 2.98 30/400 287.5 260.5
RN145VHEMC 14.5 3,610 12,317 1,210 2.98 30/400 287.5 260.5
RN196VHEMC 19.6 4,800 16,378 1,680 2.86 40/400 287.5 260.5
RN199VHRMC 19.9 4,770 16,275 1,620 2.94 45/400 294.8 278.0
RN211VHFMC 21.1 5,230 17,845 1,730 3.02 50/400 294.8 260.5
RN222VHFMC 22.2 5,470 18,664 1,810 3.02 50/400 294.8 260.5
T TN220VQEMC 22.0 5,380 18,357 1,840 2.92 50/400 336.1 279.8
L LN28VBRMC 28.4 7,050 24,055 2,310 3.05 60/390 381.8 340.9
LN30VBRMC 30.2 7,680 26,204 2,470 3.11 60/420 381.8 340.9
LN32VBRMC 32.8 8,320 28,388 2,680 3.10 60/420 381.8 340.9
LN38VBRMC 38.0 9,700 32,980 3,160 3.07 60/420 381.8 340.9
LN42VBRMC 42.8 10,530 35,907 3,510 3.00 60/420 381.8 340.9

Misubishi Rotary Inverter Compressor            
Series Model Displ. Capacity Power COP fRange Dimension(A) Dimension(B)
cm3/rev w Btu/h w w/w rps mm mm
K KNB073FCKMC 7.3 2,250 7,677 690 3.26 15-115 213.0 234.5
KNB092FADMC 9.2 2,925 9,980 850 3.44 15-115 235.9 248.5
KNB120FACMC 12.0 3,545 12,096 1,120 3.17 15-115 242.2 252.3
S SNB140FCAMC 14.0 4,380 14,945 1,300 3.37 10-120 254.2 271.5
SNB150FGAMC 15.0 4,620 15,763 1,420 3.25 10-130 259.2 283.0
SNB172FNQMC 17.2 5,430 18,425 1,770 3.07 10-130 255.7 279.5
SNB200FGMMC 20.0 6,220 21,223 1,840 3.38 10-120 259.2 283.0
SNB220FBGMC 22.0 6,840 23,338 2,060 3.32 10-120 287.5 283.0
SYB280FARMC 28.0 8,900 30,367 2,650 3.36 15-120 332.4 306.6
T TNB220FFEMC 22.0 6,940 23,679 2,150 3.23 10-110 267.1 317.5
TNB306FPNMC 30.6 9,880 33,711 3,571 3.28 10-120 294.8 273.0
M MNB33FEBMC 33.8 10,830 36,952 3,260 3.32 10-120 374.0 344.0
MNB40FEQMC 40.0 12,900 44,015 3,960 3.26 10-120 374.0 356.0
MNK42FDMMC-L 42.1 13,000 44,356 4,280 3.04 10-120 390.0 344.0
MNB42FCKMC 42.1 13,780 47,017 4,040 3.41 10-120 390.0 344.0
L LNB42FSCMC 42.9 13,980 47,700 4,240 3.30 10-120 376.8 353.4
LNB53FDKMC 53.7 16,835 57,441 5,480 3.07 10-120 421.3 407.4
LNB65FAGMC 65.2 19,760 67,421 6,460 3.06 10-120 421.3 423.8
LNB80FAMMC 80.6 23,155 79,005 8,185 2.83 10-130 421.3 423.8

 

After-sales Service: 1 Years
Warranty: 1 Years
Installation Type: Stationary Type
Lubrication Style: Oil-free
Structure Type: Closed Type
Refrigerant: Froen
Samples:
US$ 199/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

How do oil-lubricated and oil-free air compressors differ?

Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:

Oil-Lubricated Air Compressors:

1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.

2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.

3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.

4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.

Oil-Free Air Compressors:

1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.

2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.

3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.

4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.

When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.

China factory Misubishi Inverter Rotary Compressor Double Cylinder Rotor Enthalpy Increase R410A, R32, R134A for Refrigeration for Air Condition   air compressor lowesChina factory Misubishi Inverter Rotary Compressor Double Cylinder Rotor Enthalpy Increase R410A, R32, R134A for Refrigeration for Air Condition   air compressor lowes
editor by CX 2023-10-24