Tag Archives: cold room compressor unit

China Best Sales Factory High Quality and Efficient 2~25HP Briliant 4 Cylinder Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit best air compressor

Product Description

Product Description



HangZhou Ouyu  is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.

Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.

Compressor Model Nominal Motor Power (HP/KW) Displacement (50Hz)m³/h Number of Cylinder x Diameter x Stroke mm Oil injection volume (L) Powersupply V/Φ/Hz Electricalparameter Crankcase Heater (220V) W Oilsupply method Weight (including freezingoil) Kg
Max.operating current A Starting current/rotor locked current. Operating current A
YBF2FC-2.2Z 2/1.5 9.54 2×φ46×33 1 △/Y   
  Directly start the motor
8.5/4.9 39/22.5 60 Centrifgal lubrcation 45
YBF2FC-3.2G 3/2.2 9.54 2×φ46×33 1 10.0/5.8 44.2/25.5 60 47
YBF2DC-2.2Z 2/1.5 13.42 2×φ50×39.3 1.5 11.9/6.9 53.7/30.7 100 68
YBF2DC-3.2G 3/2.2 13.42 2×φ50×39.3 1.5 13.5/7.8 64/37 100 71
YBF2CC-3.2Z 3/2.2 16.24 2×φ55×39.3 1.5 14.8/8.5 64/37 100 70
YBF2CC-4.2G 4/3.0 16.24 2×φ55×39.3 1.5 16.4/9.4 76.6/44.2 100 70
YBF4FC-3.2Z 3/2.2 18.05 4×φ41×39.3 2 15.9/9.2 76.6/44.2 100 81
YBF4FC-5.2G 5/3.7 18.05 4×φ41×39.3 2 18.7/10.8 107.7/62.2 100 85
YBF4EC-4.2Z 4/3.0 22.72 4×φ46×39.3 2 18.5/10.7 92.7/53.3 100 82
YBF4EC-6.2G 6/4.4 22.72 4×φ46×39.3 2 22.9/13.2 107.7/62.2 100 85
YBF4DC-5.2Z 5/3.7 26.84 4×φ50×39.3 2 23.4/13.5 107.7/62.2 100 85
YBF4DC-7.2G 7/5.1 26.84 4×φ50×39.3 2 27.5/15.9 142.8/82.4 100 88
YBF4CC-6.2Z 6/4.4 32.48 4×φ55×39.3 2 27.5/15.9 142.8/82.4 100 89
YBF4CC-9.2G 9/6.6 32.48 4×φ55×39.3 2 34.5/20.0 142.8/82.4 100 89
YBF4VCS-6.2Z 6/4.4 34.73 4×φ55×39.3 2.6 PW
Split winding starting motor
14 39/68 120 117
YBF4VCS-10.2G 10/7.5 34.73 4×φ55×42 2.6 21 59/99 120 127
YBF4TCS-8.2Z 8/5.5 41.33 4×φ60×42 2.6 17 49/81 120 122
YBF4TCS-12.2G 12/8.8 41.33 4×φ60×42 2.6 24 69/113 120 129
YBF4PCS-10.2Z 10/7.5 48.05 4×φ65×42 2.6 21 59/99 120 127
YBF4PCS-15.2G 15/10.5 48.05 4×φ65×42 2.6 31 81/132 120 135
YBF4NCS-12.2Z 12/8.8 56.25 4×φ70×42 2.6 24 69/113 120 129
YBF4NCS-20.2G 20/15 56.25 4×φ70×42 2.6 37 97/158 120 138
YBF4H-15.2Z 15/10.5 73.6 4×φ70×55 4.5 31 81/132 120 Forced-lubrication 183
YBF4H-25.2G 25/18.5 73.6 4×φ70×55 4.5 45 116/193 120 194
YBF4G-20.2Z 20/15 84.5 4×φ75×55 4.5 37 97/158 120 192
YBF4G-30.2G 30/22 84.5 4×φ75×55 4.5 53 135/220 120 206
YBF6H-25.2Z 25/18.5 110.5 6×φ70×55 4.75 45 116/193 120 224
YBF6H-35.2G 35/25.5 110.5 6×φ70×55 4.75 61 147/262 120 235
YBF6G-30.2Z 30/22 126.8 6×φ75×55 4.75 53 135/220 120 228
YBF6G-40.2G 40/30 126.8 6×φ75×55 4.75 78 180/323 120 238
YBF6F-40.2Z 40/30 151.6 6×φ82×55 4.75 78 180/323 120 238
YBF6F-50.2G 50/37 151.6 6×φ82×55 4.75 92 226/404 120 241

Company Profile


After-sales Service: 1 Years
Warranty: 1 Years
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Structure Type: Semi-Closed Type
US$ 490/Piece
1 Piece(Min.Order)

Request Sample



air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China Best Sales Factory High Quality and Efficient 2~25HP Briliant 4 Cylinder Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   best air compressorChina Best Sales Factory High Quality and Efficient 2~25HP Briliant 4 Cylinder Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   best air compressor
editor by CX 2023-11-10