Product Description
Product Description
Suitable for various sizes of storage and preservation, as well as freezing products, cold storage facilities can be equipped with compressors of different powers, such as 15P, 20P, 25HP, and 30 horsepower, to meet the refrigeration needs of medium and low-temperature preservation cold storage, covering a wide range of cold storage scenarios from preservation to freezing.
Product Feature
I. Reliability
Mature technology, compact structure Small size, low space requirement
II. Compliance with Standards
High-precision machining process CNC center housing processing
Special processes ensure three-hole concentricity Excellent dead point clearance processing technology
III. Stability
Good stability Low machine vibration and noise production
IV. Versatility in Various Working Conditions
Use of R22, R404, etc., meets international environmental requirements, suitable for low temperature, medium high temperature, etc.
V. Electronic Protection Devices
PTC temperature monitoring device, effectively protects the motor
VI. Material Selection
Chrome-plated piston rings Aluminum pistons Hardened crankshaft Low friction shaft bushings
Using wear-resistant drive components, long service life
VII. Rational Design
Efficient valve plate group design (large refrigeration capacity, low energy consumption) Efficient suction and exhaust compression ratio
VIII. Universal Compatibility
High degree of interchangeability of parts, easy disassembly, repair, and maintenance
Product Parameters
| Model | Nominal Power HP/KW | Disp. m³/h 50Hz |
Number of Cylinders ×Diameter ×Stoke |
Exhaust & Suction Valve mm/IN | Oil Volume L |
Power V/φ/Hz | Electrical Parameter | Crankcase Heater (220V)W | Oil Supply Method | Weight (Include Oil) Kg | ||
| DL Exhaust Valve | SL Suction Valve | Max Operating Current(A) | Starting/ Locked Current(A) | |||||||||
| 2YD-2.2 | 2/1.5 | 13.4 | 2×Φ50×39.3 | φ16 | φ22 | 1.5 | 220-240△/ 380-420Y/3/50 265-290△/ |
11.9/6.9 | 53.7/30.7 | 120 | Centrifugal lubrication | 67.5 |
| 2YG-3.2 | 3/2.2 | 13.4 | 2×Φ50×39.3 | φ16 | φ22 | 1.5 | 13.5/7.8 | 64/37 | 120 | 70.5 | ||
| 2YD-3.2 | 3/2.2 | 16.2 | 2×Φ55×39.3 | φ16 | φ22 | 1.5 | 14.8/8.5 | 64/37 | 120 | 70 | ||
| 2YG-4.2 | 4/3 | 16.2 | 2×Φ55×39.3 | φ16 | φ22 | 1.5 | 16.4/9.4 | 76.6/44.2 | 120 | 70 | ||
Model Cross Reference
| No. | Power Supply | Description | Model DMZL | Bizter Cross reference Model (new model) |
Bizter reference Previous model | HP | KW | Displacement (M³/h)/50HZ |
| 1 | 380-420V/3PH/50HZ;440-480V/3PH/60HZ | 2 cylinders | 2YD-2.2 | 2DES-2 | 2DC-2.2 | 2 | 1.5 | 13.5 |
| 2 | 2YG-3.2 | 2DES-3 | 2DC-3.2 | 3 | 2.2 | 13.5 | ||
| 3 | 2YD-3.2 | 2CES-3 | 2CC-3.2 | 3 | 2.2 | 16.2 | ||
| 4 | 2YG-4.2 | 2CES-4 | 2CC-4.2 | 4 | 3 | 16.2 | ||
| 5 | ||||||||
| 6 | 4 cylinders Small Octagonal | 4YD-3.2 | 4FES-3 | 4FC-3.2 | 3 | 2.2 | 18.1 | |
| 7 | 4YG-5.2 | 4FES-5 | 4FC-5.2 | 5 | 3.7 | 18.1 | ||
| 8 | 4YD-4.2 | 4EES-4 | 4EC-4.2 | 4 | 3 | 22.7 | ||
| 9 | 4YG-6.2 | 4EES-6 | 4EC-6.2 | 6 | 4.4 | 22.7 | ||
| 10 | 4YD-5.2 | 4DES-5 | 4DC-5.2 | 5 | 3.7 | 26.84 | ||
| 11 | 4YG-7.2 | 4DES-7 | 4DC-7.2 | 7 | 5.1 | 26.84 | ||
| 12 | 4YD-6.2 | 4CES-6 | 4CC-6.2 | 6 | 4.4 | 32.48 | ||
| 13 | 4YG-9.2 | 4CES-9 | 4CC-9.2 | 9 | 6.6 | 32.48 | ||
| 14 | 4YG-10.2 | 4VES-10 | 4VES-10.2 | 10 | 7.5 | 34.7 | ||
| 15 | 4 cylinders Medium Octagonal |
4YD-8.2 | 4TES-9 | 4TCS-8.2 | 8 | 5.5 | 41.33 | |
| 16 | 4YG-12.2 | 4TES-12 | 4TCS-12.2 | 12 | 8.8 | 41.33 | ||
| 17 | 4YD-10.2 | 4PES-12 | 4PCS-10.2 | 10 | 7.5 | 48.5 | ||
| 18 | 4YG-15.2 | 4PES-15 | 4PCS-15.2 | 15 | 10.5 | 48.5 | ||
| 19 | 4YD-12.2 | 4NES-14 | 4NCS-12.2 | 12 | 8.8 | 56.25 | ||
| 20 | 4YG-20.2 | 4NES-20 | 4NCS-20.2 | 20 | 15 | 56.25 | ||
| 21 | ||||||||
| 22 | Large 4 cylinders | 4VD-15.2 | 4HE-18 | 4H-15.2 | 15 | 10.5 | 73.6 | |
| 23 | 4VG-25.2 | 4HE-25 | 4H-25.2 | 25 | 18.5 | 73.6 | ||
| 24 | 4VD-20.2 | 4GE-23 | 4G-20.2 | 20 | 15 | 84.5 | ||
| 25 | 4VG-30.2 | 4GE-30 | 4G-30.2 | 30 | 22 | 84.5 | ||
| 26 | ||||||||
| 27 | Large 6 cylinders | 6WD-25.2 | 6HE-28 | 6H-25.2 | 25 | 18.5 | 110.5 | |
| 28 | 6WG-35.2 | 6HE-35 | 6H-35.2 | 35 | 25.5 | 110.5 | ||
| 29 | 6WD-30.2 | 6GE-34 | 6G-30.2 | 30 | 22 | 126.8 | ||
| 30 | 6WG-40.2 | 6GE-40 | 6G-40.2 | 40 | 30 | 126.8 | ||
| 31 | 6WD-40.2 | 6FE-44 | 6F-40.2 | 40 | 30 | 151.6 | ||
| 32 | 6WG-50.2 | 6FE-50 | 6F-50.2 | 50 | 37 | 151.6 | ||
| 33 | ||||||||
| 34 | Double Stage | 6WDS-20.2 | S6H-20.2 | S6H-20.2 | 20 | 15 | 110.5 | |
| 35 | 6WDS-25.2 | S6G-25.2 | S6G-25.2 | 25 | 18.5 | 126.8 | ||
| 36 | 6WDS-30.2 | S6F-30.2 | S6F-30.2 | 30 | 22 | 151.6 |
Company Profile
FAQ
Q1: Are you trading company or manufacturer ?
A1: We are manufacturer.
Q2: Do you have your own R&D team?
A2: Yes, we can customize products as your requirements.
Q3: How about the payment methods?
A3: We support T/T, L/C.
Q4: Can we be your distributor?
A4: We are looking for distributors and agents all over the world.
Q5: How’s the package?
A5: Normally are wooden package, but also we can pack it according to your requirements.
Q6: How long is the delivery time?
A6:It takes within 1 month from receipt of the deposit to preparation of the goods.
Q7: How long is the quality guarantee period?
A7:The warranty period is 1 year, and the after-sales service is available 24 hours.
Q8: What is your price?
A8:Our price is based on quantity, material and size you required.The more machines you order, the lower price we will give!
Q9: I want to know more details, what to do?
A9: Please send us an inquiry with your email address if you seldom use Made-in-China, or just press the button chatting online, We are here for you.
We are a manufacturer that supports wholesale and customization, with good quality and cheap prices. If you need to order, please contact us via email. We will provide you with a quote promptly after receiving your inquiry. Wishing you a pleasant life!
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by lmc 2024-11-19
China Hot selling Scroll Compressor Air-Compressor Screw Scroll Compressor Semi-Hermetic Compressor for Cold Room air compressor portable
Product Description
Advantages for our condensing unit
1. The accessories for the unit include liquid receiver, pressure gage, pressure controller, sight glass, filter junction box, etc.
2. The copper tube of air cooled Condensing units get through the 2.6Mpa pressure test, meet the request of normal work.
3.Every part of units is best in corrosion protection.
4. Air cooled condensing unit refrigerating capacity ranks from 0.2KW to 29KW. evaporating temperature:-45ºC-+15°C, run steady under the ambient temperature +43ºC.
5. Proper structure, accurate and reliable operating system for the air cooled condensing unit. 6. Use the high efficiency and large air volume axial fan, with low noise and energy saving.
ApplicationHotels, hospitals, blood banks, poultry slaughter and processing, CHINAMFG and processing, mushroom cultivation,
agricultural product processing, dairy production, pharmaceutical processing and logistics, beverage production and processing,
beer production and cooling, large-scale logistics storage, chemical product cooling, leather manufacturing, injection molding,
machine cooling, steel cooling, ommunication equipment, ship manufacturing and more.
| Suitable Temperature for Various Products | ||||||||
| Temperature | Condensing Unit Type | Suitable Products | ||||||
| -5°C ~ +5°C | Single stage piston/scroll/ CHINAMFG condensing unit |
Vegetables, Fruit, Drink, Beer, Medicines, Vaccine… |
||||||
| -15°C ~ -25°C | Single stage piston/scroll/ CHINAMFG condensing unit |
Meat, Fish, Medicines, Seafoods, Ice Cream… |
||||||
| -30°C ~ -40°C | 2-stage piston/screw compressor condensing unit |
Meat, Fish, Blood… | ||||||
| -45°C ~ -70°C | Cascade condensing unit | Tuna, Vaccine… | ||||||
Product Specifications
| 1 | Product name | Stainless Steel Brazed Plate Heat Exchanger | |||
| 2 | Refrigerant | R22,R407etc. | |||
| 3 | Voltage | AC220v/380v/customized ,50Hz/60Hz | |||
| 4 | cold room temperature | -25~45ºC | |||
| 5 | Range of evaporating temperature | -30~50ºC | |||
| 6 | Warranty | 1 Year | |||
| 7 | Composition | Compressor, crankcase heater, oil pressure safety switch, air-cooled condenser, receiving tank, drier-filter, meter panel, pressure controller, refrigeration oil, protection gas, double stage compressor with intermediate cooler |
|||
1. Why do we insist original new compressor?
Only original brand new compressor can have the best quality & high efficiency. So you save money on electric bill and maintenance cost.
2. Why same HP compressors have big price difference?
Even same horse power compressor condensing unit, the compressor have different designs, so the cooling capacities are different. Also their condensers are different. So cooling capacity bigger, price higher.
3. Can refrigeration units be customized?
Yes. We have experienced technicians and professional team can help customization. But we have many models for you to choose, better choose them because the delivery time is much shorter.
4. How many kinds of compressors?
Semi-hermetic(ECOLINE series),Two stages semi-hermetic, Semi-hermetic screw compressor, Hermetic screw compressor.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Principle: | Mixed-Flow Compressor |
|---|---|
| Application: | Intermediate Back Pressure Type, High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Samples: |
US$ 200/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-05-16
China Best Sales Factory High Quality and Efficient 2~25HP Briliant 4 Cylinder Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit best air compressor
Product Description
Product Description
ABOUT US
HangZhou Ouyu is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.
Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.
| Compressor Model | Nominal Motor Power (HP/KW) | Displacement (50Hz)m³/h | Number of Cylinder x Diameter x Stroke mm | Oil injection volume (L) | Powersupply V/Φ/Hz | Electricalparameter | Crankcase Heater (220V) W | Oilsupply method | Weight (including freezingoil) Kg | |
| Max.operating current A | Starting current/rotor locked current. Operating current A | |||||||||
| YBF2FC-2.2Z | 2/1.5 | 9.54 | 2×φ46×33 | 1 | △/Y Directly start the motor 220~240△ 380~420Y /3~/50 265~290△ 400~480Y /3~/60 |
8.5/4.9 | 39/22.5 | 60 | Centrifgal lubrcation | 45 |
| YBF2FC-3.2G | 3/2.2 | 9.54 | 2×φ46×33 | 1 | 10.0/5.8 | 44.2/25.5 | 60 | 47 | ||
| YBF2DC-2.2Z | 2/1.5 | 13.42 | 2×φ50×39.3 | 1.5 | 11.9/6.9 | 53.7/30.7 | 100 | 68 | ||
| YBF2DC-3.2G | 3/2.2 | 13.42 | 2×φ50×39.3 | 1.5 | 13.5/7.8 | 64/37 | 100 | 71 | ||
| YBF2CC-3.2Z | 3/2.2 | 16.24 | 2×φ55×39.3 | 1.5 | 14.8/8.5 | 64/37 | 100 | 70 | ||
| YBF2CC-4.2G | 4/3.0 | 16.24 | 2×φ55×39.3 | 1.5 | 16.4/9.4 | 76.6/44.2 | 100 | 70 | ||
| YBF4FC-3.2Z | 3/2.2 | 18.05 | 4×φ41×39.3 | 2 | 15.9/9.2 | 76.6/44.2 | 100 | 81 | ||
| YBF4FC-5.2G | 5/3.7 | 18.05 | 4×φ41×39.3 | 2 | 18.7/10.8 | 107.7/62.2 | 100 | 85 | ||
| YBF4EC-4.2Z | 4/3.0 | 22.72 | 4×φ46×39.3 | 2 | 18.5/10.7 | 92.7/53.3 | 100 | 82 | ||
| YBF4EC-6.2G | 6/4.4 | 22.72 | 4×φ46×39.3 | 2 | 22.9/13.2 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-5.2Z | 5/3.7 | 26.84 | 4×φ50×39.3 | 2 | 23.4/13.5 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-7.2G | 7/5.1 | 26.84 | 4×φ50×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 88 | ||
| YBF4CC-6.2Z | 6/4.4 | 32.48 | 4×φ55×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 89 | ||
| YBF4CC-9.2G | 9/6.6 | 32.48 | 4×φ55×39.3 | 2 | 34.5/20.0 | 142.8/82.4 | 100 | 89 | ||
| YBF4VCS-6.2Z | 6/4.4 | 34.73 | 4×φ55×39.3 | 2.6 | PW Split winding starting motor 380~420YY /3/50 400~480YY /3/60 |
14 | 39/68 | 120 | 117 | |
| YBF4VCS-10.2G | 10/7.5 | 34.73 | 4×φ55×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4TCS-8.2Z | 8/5.5 | 41.33 | 4×φ60×42 | 2.6 | 17 | 49/81 | 120 | 122 | ||
| YBF4TCS-12.2G | 12/8.8 | 41.33 | 4×φ60×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4PCS-10.2Z | 10/7.5 | 48.05 | 4×φ65×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4PCS-15.2G | 15/10.5 | 48.05 | 4×φ65×42 | 2.6 | 31 | 81/132 | 120 | 135 | ||
| YBF4NCS-12.2Z | 12/8.8 | 56.25 | 4×φ70×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4NCS-20.2G | 20/15 | 56.25 | 4×φ70×42 | 2.6 | 37 | 97/158 | 120 | 138 | ||
| YBF4H-15.2Z | 15/10.5 | 73.6 | 4×φ70×55 | 4.5 | 31 | 81/132 | 120 | Forced-lubrication | 183 | |
| YBF4H-25.2G | 25/18.5 | 73.6 | 4×φ70×55 | 4.5 | 45 | 116/193 | 120 | 194 | ||
| YBF4G-20.2Z | 20/15 | 84.5 | 4×φ75×55 | 4.5 | 37 | 97/158 | 120 | 192 | ||
| YBF4G-30.2G | 30/22 | 84.5 | 4×φ75×55 | 4.5 | 53 | 135/220 | 120 | 206 | ||
| YBF6H-25.2Z | 25/18.5 | 110.5 | 6×φ70×55 | 4.75 | 45 | 116/193 | 120 | 224 | ||
| YBF6H-35.2G | 35/25.5 | 110.5 | 6×φ70×55 | 4.75 | 61 | 147/262 | 120 | 235 | ||
| YBF6G-30.2Z | 30/22 | 126.8 | 6×φ75×55 | 4.75 | 53 | 135/220 | 120 | 228 | ||
| YBF6G-40.2G | 40/30 | 126.8 | 6×φ75×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-40.2Z | 40/30 | 151.6 | 6×φ82×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-50.2G | 50/37 | 151.6 | 6×φ82×55 | 4.75 | 92 | 226/404 | 120 | 241 | ||
Company Profile
| After-sales Service: | 1 Years |
|---|---|
| Warranty: | 1 Years |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Structure Type: | Semi-Closed Type |
| Samples: |
US$ 490/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-11-10